Robustness of weighted L p - depth and L p - median

نویسندگان

  • Yijun Zuo
  • YIJUN ZUO
چکیده

Lp-norm weighted depth functions are introduced and the local and global robustness of these weighted Lp-depth functions and their induced multivariate medians are investigated via influence function and finite sample breakdown point. To study the global robustness of depth functions, a notion of finite sample breakdown point is introduced. The weighted Lp-depth functions turn out to have the same low breakdown point as some other popular depth functions. Their influence functions are also unbounded. On the other hand, the weighted Lp-depth induced medians are globally robust with the highest possible breakdown point for any reasonable estimator. The weighted Lp-medians are also locally robust with bounded influence functions for suitable weight functions. Unlike other existing depth functions and multivariate medians, the weighted Lp depth and medians are easy to calculate in high dimensions. The price for this advantage is the lack of affine invariance and equivariance of the weighted Lp depth and medians, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

On reducibility of weighted composition operators

In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...

متن کامل

Influence functions of some depth functions, and application to depth-weighted L-statistics

Depth functions are increasingly being used in building nonparametric outlier detectors and in constructing useful nonparametric statistics such as depth-weighted L-statistics. Robustness of a depth function is an essential property for such applications. Here, robustness of three key depth functions, the spatial, simplicial, and generalized Tukey, is explored via the influence function (IF) ap...

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004